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ABSTRACT

.Most commercial and military systems subject to failure have
an initial period of growth with uncertain time dependent growth
rate. Prediction of spare parts demand and service personnel demand
is correspondingly uncertain and existant statistical tools are
inadequate for the adaptive ad hoc planning needed.

In our model, systems subject to failure enter into use at
the epochs of a time-inhomogeneous Poisson process of rate A(t).

A component or module of each system in use has constant failure
rate u and generates demand for parts and service. The distribution
of the cumulative failures N(t) is obtained. Numerical methods

and the asymptotic distribution for large t are described.
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In Section 2, the case of constant Poisson build up where A(t) = )
is treated. The cumulative demand distribution at time t is obtained
through generating function methods by treating the population of systems
in use and the cumulative demand as a bivariate Markov chain. An
algorithm for finding the distribution numerically when the cumulative
demand at time t is modest is displayed in Section 3. A graphical
display shows growing normality for large demand. In Section 4, time
dependent entry rate A(t) is treated, and the distribution of cumula-
tive demand N(t) is found. It is shown that this demand is both a
compound Poisson distribution and a mixture of Poisson distributions,
and that the mean and variance of the demand at time t have simple useful

forms. Specifically it is shown that

.

E[N(t)] = v (f) A(1) (t-1)dT (1.1
and that
Va 2t 2
r[N(t)] = v© [ a(r)(t-1)%dr + E[N(1)]. 1.2)
0

The asymptotic character of the distribution of demand is exhibited in
Section 5, and conditions under which the cumulative demand is normal
or Poisson are described. Practical use of the tools developed in this
paper is discussed in the final section.

The paper is self-contained. Only a knowledge of probability theory,
Péisson processes, the central limit theorem and elementary stochastic

process tools as found, e.g., in Ross (1970) is required.

daad




2. Replacement Demand Associated with Constant Poisson Build Up

Consider a random counting process M(t) for "primary' events (e.g.,
aircraft entering service). We suppose throughout this section that all
primary units produced are still functioning at time t. Each primary event
generates subsequent secondary Poisson events (e.g., demands for service
or part replacement) with rate uy. If Ti is the time of the i-th primary
event and if L(t - Ti) is the random number of secondary events up to time
t, initiated by the primary event at Ti’ then the total number N(t) of

events is

M(t)
N(t) = ) L(t-T.) , (2.1)
. i
i=1
with the usual convention that an empty sum has the value 0. We are inter-
ested in the distribution of N(t) when M(0) = 0.
We first consider the case for which the primary counting process
M(t) is Poisson with rate A, To find the distribution of N(t) for this
case one can use bivariate Markov processes and bivariate generating func-
tions, Let [M(t), N(t)] be the bivariate Markov process on the set of

states {(m,n); 0 s m, 0 s n} with transition rates

V(m,n) (m+1,n) = A

and (2.2)

V(m,n)(m,ne1) M -

Let p, (t) = P[M(t) = m, N(t) = n|{M(0) = 0, N(0) = 0) and let us denote by

glu,v,t) = ] (t)u™" (2.3)
all m,n

Po.n




the bivariate probability generating function of (M(t), N(D)].

Since
dp, (1)
=0+ ml")pm,n(t) * Apm-l,n(t)
(2.4)
+ mupm.n_l(t), for n,m 20
one finds
EL(";T’V_ﬂ = ')‘(l'u)g(unv’t) - b g_u g(u,V.t)
.+ v g—u g(u,v,t) (2.5)

If g(u,v,t) = exp{Q(u,v,t)} then clearly, for glu,v,0) = 1, one has

ag(gi\’,t) = -A(l-u) - uu(l-v)g—u Q(u’v’t) . (2-63)
Q(u,v,0) = 0 (2.6b)

If one seeks a solution linear in u, i.e.,

Q(u,v,t) = A(t) + B(v,t)u 2.7)
then (2.6) becomes

S A +u2BLY o gl - ueve B,y (2.8)

One then must have J

g? A(t) = -2

g_t B(v,t) = A - u(1-v)B(v,t) .
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One thus obtains a particular solution of (2.6) with A(0) = B(0) = O:

A(t) = <)t )

and
. 1 e-ut(l-v)
B(t) = At ut (1-v) ] -
Hence
g(u,v,t) = exp(-3t[] - s (1 - e Ht-Vyyy (2.9)

A simple argument demonstrates that (2.6) has only one solution, which we
have found.

The probability generating function for N(t) is then
o ) = ERNV) = ga,v,n) (2.10)
which becomes

e-ut(l-v)
ut(1-v)

]l -

pt(v) exp{-At[l - 1Y . (2.11)

This is the generating function of a compound Poisson process, whose

increments, say Vt, are simply related to a secondary Poisson distribution.

Specifically, one can write (2.11) as
ct(v) = exp{-it[l - ut(v)]} (2.12)

where




\' _ eﬁut(]-V)

1

(2.13)

_ t
at(v) = E[v 7] TSB!

ut(v) is then the generating function of the compounding distribution of

Vt’ It is easily seen that at(v) corresponds to the distribution

ST B (S M
P[Vt =n] = Y Z T € . (2.14)
r=n+]

The mean and the variance may be obtained directly from (2.11) and are

2
E(N()] = BB, (2.15)

2
var[N(t)] = At[(L;L <8 (2.16)

Note that the variance-mean ratio is

\ N
%%ﬁ%l=l+§ut, (2.17)

which is always larger than one.

We note that the generating function (2.11) is similar in character

to that of a generating function obtained by Berg (1981).
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3. Evaluation of the Distribution

We have just shown that the distribution of N(t) is that of a com-

pound Poisson distribution with the underlying Poisson process having

rate X, and with the compounding variable Vt having the distribution (2.14),

Thus,

P, (t) = P{N(t) = n} =

T -t (At)k k
Z ¢ kT %

a_(t) (3.1)
k=0

k
where an(t) is the n-th term of the k-fold convolution of Vt with itself.

In other words,

H uﬁ(t) - P{V:k n} , (3.2)

where V;k denotes the sum of k independent random variables, each having
distribution (2.14). The distribution of V:k can be obtained easily by
convolving iteratively the distribution (2.14).

One can obtain pn(t) explicitly from (2.11) for small values of n

by differentiation. One finds that

Py(t) = exp(-At + = (1 - ™)), (3.3)

%, (V)

= L = AL etvt
Py (1) ¥ lyeo Po(t) u[1 e
- ut e'Y (3.4)
and that

1 32 A A -ut -ut,2

P(t) = 3'335 P (V) ve0 =T Pos [1 - e - ute™)

s 201 - 'Y - 2ute™ L ut)2e MY (3.5)




For larger values of n, say n > 3, the probabilities pn(t) can be obtained

numerically. The plots of the standardized survival functions, i.e., of

pNG) - E[N(D] , o,

/Var[N(t)i

t4

for various values.of parameters B = At and A ¥ vt on normal probability
paper are shown in Figure 1. The diagonal straight line in Figure 1 repre-
sents the survival function of the standard normal distribution.

From the plots, it can be seen that, for about A = 20 and B 2 10,
the central part of the distribution can be well approximated by the
standard normal. Note, that the left tail of the distribution of N(t)
is heavier than normal so that the normal approximati.n underestimates
the percentage points of the N(t) distribution. On the other hand, the
right side of N(t) is lighter and the mass point at the extreme left

represents the probability of having no replacements needed. Theoret-

ical justification of the normality will be given in Section 5.
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4. The Distribution of the Cumulative Demand N(t) for More General

Primary Input Streams

The process described in Section 2 can be generalized to better model
real world situations.
Theorem 4.1. If the sequence of primary events is any point process and
if the number of secondary events generated by primary events is Poisson,
then N(t) is a mixture of Poisson distributions, i.e.,

b (V) = M) - Te“’““’)dct(e) (4.1)
0

where Gt(e) is a c.d.f.
Proof: Let w = (Tl(w);Tz(w),...) be a sample sequence of primary epochs.
Then the conditional probability generating function is

-a, (W) (1-v)
Py (v w) = e

and ut(u) is a Poisson parameter. Hence
pe(v) = [ o tv] o, (do)

where at(du) is a measure on the space of sample sequences. The theorem
then follows. [0

Example 4.2. We will verify the Poisson mixture property for the Poisson

input case of Section 2. For notational brevity, let At = B and ut = A.

When the primary stream is Poisson, (2.11) may be written as

1 - -A(1-v)

Py (v) = exp{-B[1 - "ﬁﬂj_']} .
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Letting 1-v = s, we get
bt -As
-8s 1l - e
dG(8) = - -
é e (6) = exp{-B[1 )}

But this is a Laplace transform of a compound Poisson process obtained
from a uniform distribution over (0,A). Hence the mixing distribution
G(8) is that compound Poisson distribution.

Remark 4.3. The result of Theorem 4.1 is not altered by phase out of

primary sources due to failure, obsolescence, or random utilizations,

as we see next.

For most industrial applications, the primary production will also
H vary with time due to initial buildup and ultimate phaseout. Not only
will primary units (e.g., aircraft) disappear because of catastrophic
failure or obsolescence but the primary units available may have random

utilization arising from economic fluctuations, long downtimes, etc.

For such a more general input streams let M(t) be the total number
of primary units in operation at time t, and let N(t) be the cumulative

number of replacement parts (service procedures) required up to time t.

Let mw(t) be a realization of the input process. For each such realiza-
tion let Nm(t) be the random variable associated with that primary
realization. If the secondary events are Poisson with rate y, then

Nw(t) has Poisson distribution with parameter

t
1,(t) = £ m (y)dy . (4.2)

Equation (4.2) defines a random process I(t) of basic interest. Since
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(g

I(t) = (ut) - & [ M(y)dy (4.2a)

(=)

we see that I(t) is dimensionless and that (ut)'ll(t) is the average

population up to time t. Moreover,

-1,(8)(-v)

E[vN(t)] =[e a, (dw) =

ot(V) =
= gle’ 1 (DA-V)y (4.3)

Comparing (4.1) and (4.3) we see that

Gt(e) = P{I(t) s 8} . (4.4)

The following results are a direct consequence of Theorem 4.1.

t

Theorem 4.4. (a) E[N(t)] = E[1(t)] = u [ E[M(y)]dy (4.5)
0

(b) E[N(t)(N()-1)] = E[1%(1)) (4.6)

(¢) Vvar[N(t)] = var[I(t)] + E[I(v)] . (4.7)

Note that if I(t) is non-random with E[I(t)] = E£(t), then we have

E[VN(t)] . E[e-I(t)(l-v)] e e E((1-V) , (4.8)

o

and thus N(t) is a nonhomogeneous Poisson process with rate £(t), i.

n , ’
p(t) = 15%2-]- ) na01,2,... (4.9)

Example 4.5. Suppose that the primary process is deterministic and the

*
interarrival times between primary events equal T . In this case




m ) =k, if kT Sy < (keD)T

for x = 0,1,2,..., and
t T+
I(t) = lw(t) =y f mw(Y)dY = uK[t - (K+1) 5—] ’ (4.10)
0

where K = [t/T*].

Theorem 4.6. If the primary production stream is a nonhomogeneous Poisson
process M(t) with rate A(t) continuous in t then the number of secondary
events N(t) has a compound Poisson distribution.

Proof: We have seen in (4.2) that N(t) is a Poisson mixture Kl(t) with

random mixing parameter

t
I(t) = v [ M(x)dt = pS(t) , (4.11)
0
t
where S(t) = [ M(1)dt is a stochastic integral. One then has to first order
0
in d1,
E[e-SdM(D) . e-A(t)d1[l-e's]
and
o, (v) = EN(V)) « é e T(-Vu dFg ey (1) = 854y (4(1-V))  (4.12)
where
bs(e) () = ELe73(M)) .
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t

t y
Hence, S(t) = g dy [ aM(1) = [ (t-1)dM(1) for every sample path. For
0 0
any Riemann sequence of partitions Pj of the interval [0,1) whose

maximum interval 6). = max ij goes to zero
k

S(t) = lim J (t-1 ) [M(1,;) - M(1)]

Gj*O k
and
) -(t-rk)s ’
sty (8) =61.]f(l”1(1 exp{-1(1,) Sxl1-e 1}
J
) -(t-Tk)S
‘51.1-:'(\) exp{-z A (1)) ij[l-e 1}
)
t (t-1
= exp{-/ A(1)[l-e "7 )$1d1)
0
{ 1 } -(t-m)s A1) 4 4.13
= exp{-A(t)[] - : e ) 1} (4.13)
t
where A(t) = [ A(1)dT. Thus (4.12) becomes
0

t
0, (V) = exp{-A(t)[1 - é -e-(t-T)u“-V) %-((:-% dr]}

= exp{-A(t)[l-ut(v)]}. (4.14)

This is the generating function of a compound Poisson distribution, with

]

. .
o, (v) = [ e (t-OV) 2D gp (4.15)
0

Remark 4.7. For the homogeneous Poisson case with A(t) = A, (4.15)

reduces to at(v) of (2.13).
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5. Asymptotic Normality and Asymptotic Poisson Character of the

Cumulative Demand

Consider first the time homogeneous process of Section 2. When
the parameters A = ut and B = A\t are small, one expects that the distri-
bution of N(t) will be Poisson. One also expects that when A and B
are large the distribution of N(t) will be close to the normal distri-
bution.

Let LA,B be the number of secondary events N(t) with parameters
A and B let KY be a Poisson r.v. with parameter y; let N 2 be a normal
r.v. with mean u and variance cz. ¥oe

The Poisson character of Ly g for A and B small is described in

the following theorem.

Ku/2 as A = O+,

. d
Theorem 5.1, For fixed a > 0 LA,a/A

Proof: The generating function for LA,u/A is

-A(l v)
o¢ (v) = exp{-(a/A)[1 - -—T-i—T-—]

As A » 0° we find from L'Hospital rule that lim °t(v) = exp{-r (1-v)}
which is the generating function of Ka/Z' o

It is well known that Ky is close to normal when y is large.
Theorem 5.1 then say that the distribution will look Poisson when

E[N(t)] = xutz/z is modest and At is small. The asymptotic normality

for the time homogeneous case will be treated in the following discussion

_for the nonhomogeneous case,

From (4.2) and (4.11) we know that N(t) = K S () where S(t) =
Io M(1)dt, with M(1) being the total number of primary events up to

time 1 generated by a nonhomogeneous Poisson process. Differentiating
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(4.13) with respect to s at s = 0 we find

t
8 = E[S(1)] = [ A1) (t-1)dt = A(t)et . (5.1
0

Differentiating twice one finds that

E(s2(1)] = A()et? + (A(r)er)2. (5.2)
Hence,
t
cf = Var[St] = f X(r)(t-r)zdt = X(t)*t2 (5.3
0

For (5.1), (5.2) and (5.3), A(t) must be integrable. For the practical
cases of interest X(t) will be continuous and differentiable. We
assume as much smoothness as needed for what follows.
Lemma 5.2. Let t/ot -+ 0. Then
i d
(s(t) - St)/ot - No.1 as t + =,

Proof: First note that

-s(S(t)-St) s2 t 2
Ele ] = exp{5- [ ¥(s,1,t) (t-1)°2 (1)d1)
0
where
Y(s,7,t) = e-(t")_ns-l‘(t-'t)s .

(t-1)"s%/2




dt}
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Then
3 [1-¥(, 1, 0) ]2 (1) (t-1)°
-s(S(t)-S,)/o 2 2t o'’
t’' 7t §°/2 [ t
Ele J=e exp{-Tf 3
0 °
t
(5.4)
It is easy to show that
I-W(oi,‘r,t]s%-:l,for0<s<w,
t t
For s fixed, one then has
1 t S 2 1 st
0 ¢ = g [I-W(E:,T,t)]x(r)(t-t) dr s 3 O (5.5)

t

As t - =, the second exponent in (5.4) goest to zero, since t/ot -0
and the normality follows,
From N(t) = KuS(t) one finds easily that
Ry = EIN(®)] = EuS(t)] = W8, (5.6)
and

£2 « Var[N(t)) = w%o? + 48, (5.7)

.We can now prove the main theorm of this section,

Theorem 5.3, If oi/St + w g5 t+ = then

(Nee) - Ry)ve, Bng
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Proof: It follows from (4.12) that

-u
E[e'uN(t)] - E[e'u(l'e )S(t)]

and hence
~u(N(2)-R, ) /g, ~u/k,
E[e ] = E{exp{-u(l-e IS(t) + uuSt/Et}]
-u/Et
= E{exp{-u(l-e )(S(t)-St)}]
E[exp{-uS, (1 A" ) 1. (5.8)
*E[exp{-u -e - . .
t |
F From Lemma 5.2, we see that as t + = the first expectation in (5.8)

converges to u2/2 and the second expectation to one. This proves the

normality.

Remark 5.4. The condition o:/Et + = is not very restrictive. It holds
for a wide range of rates A(t). It holds, for example, when 1A (t) is

a positive constant on a finite interval, or when )(t) = t“. - < g < w»,
or when 2 (t) = exp {-yt}, y > 0. It does not hold, for instance, for
A(t) = exp {Bt}, 8 > 0.

Remark 5.5. When the primary stream is homogeneous Poisson we have

A(t) =) and
[ ] t 2 |
8, =) é (t-1)dt = 2t“/2 |

and




t
o2 ea [ (t-1)%r = a3 .
0

Consequently

2
Nt = ust = t€/2

and

2

Ef = w3+ ez,

which we already obtained in Section 2. Clearly,

02 3

t AtT/3 2
_— 2 -3 t » @
St at4)2

as t - = and the asymptotic normality is justified.
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6. Practical Application of the Results

When a new system comes into use, its future growth is often
uncertain at least to some degree. For military systems growth
may depend on field performance of the systems, on the perception
of real costs and on the uncertainities in future government funding.
For commercial systems, market acceptance, time dependent price as
influenced by volume and competition contribute to the uncertainty
of future growth. The primary input rate \(t) is correspondingly
unknown. Moreover the failure rate u of a perticular system com-
ponent may only emerge from experience. To avoid premature capital
outlay costs and stprage costs, scheduled incremental acquisition
and/or production will'often be appropriate. In a typical applica-
tion, planning will be adaptive and ad hoc.

The reader may question the legitimacy of the assumed Poisson
rate A(t) for introduction of a system into service. This assumption
is made to reflect randomness in the arrival process and to assure
tractability. For a commercial system, such as a commercial aircraft
or large computer, where market place acceptance has a strong role,
the arrival process has a character simil;r to that of rumor propaga-
tion (cf. Dietz (1967), or Bailey (1975)) and the Poisson assumption
seems indicated. Even in military contexts where a fixed schedule
of introduction is hoped for, randomness in shipping times, training
times, etc, encourages the Poisson ;ssumption. In these few cases

where introduction at fixed integrvals occurs (cf. Example 4.5) the

formulae needed are obtained easily.




The adaptive ad hoc planning will have only one realization

(sample path) wo available. At time t one will have a history for
that sample path of cumulative initiations M(wo,t'), 0st'<t,
to date. One will also have for each part type A a history of cumula-
tive replacements NA(mo,t‘), 0st'st., Aresidual number RA(t) of
spare parts on hand will be known. Suppose the failure rate u is
known. Let ty; =t + 4, be some future horizon time of concern. A
projected initiation rate A(t') in the period t ¢ t' ¢ ty is assumed
available. One can then establish either from (3.1) or from the
result of Theorem 5.3 a probability of spare part depletion by time
t, in the absence of new spare parts production in (t,tH). The pro-
duction quantities and the production schedule may then be established
from lot size techniques such as developed for time varying deter-
ministic demand (cf. Peterson and Silver (1979, pp. 300-341)).

If the failure rate u is not initially known, it may be estimated
at time t from cumulative failure history, as for instance, in Keilson
and Sumita (1982). In the latter paper distributed arrival times

corresponding to A(t) are incorporated.
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